Flagellin/TLR5 signaling potentiates airway serous secretion from swine tracheal submucosal glands.
نویسندگان
چکیده
Airway serous secretion is essential for the maintenance of mucociliary transport in airway mucosa, which is responsible for the upregulation of mucosal immunity. Although there are many articles concerning the importance of Toll-like receptors (TLRs) in airway immune systems, the direct relationship between TLRs and airway serous secretion has not been well investigated. Here, we focused on whether TLR5 ligand flagellin, which is one of the components of Pseudomonas aeruginosa, is involved in the upregulation of airway serous secretion. Freshly isolated swine tracheal submucosal gland cells were prepared, and the standard patch-clamp technique was applied for measurements of the whole cell ionic responses of these cells. Flagellin showed potentiating effects on these oscillatory currents induced by physiologically relevant low doses of acetylcholine (ACh) in a dose-dependent manner. These potentiating effects were TLR5 dependent but TLR4 independent. Both nitric oxide (NO) synthase inhibitors and cGMP-dependent protein kinase (cGK) inhibitors abolished these flagellin-induced potentiating effects. Furthermore, TLR5 was abundantly expressed on tracheal submucosal glands. Flagellin/TLR5 signaling further accelerated the intracellular NO synthesis induced by ACh. These findings suggest that TLR5 takes part in the airway mucosal defense systems as a unique endogenous potentiator of airway serous secretions and that NO/cGMP/cGK signaling is involved in this rapid potentiation by TLR5 signaling.
منابع مشابه
Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands.
Cystic fibrosis (CF) is caused by mutations in the gene coding for the CF transmembrane conductance regulator (CFTR). From human normal tracheal submucosal gland cells in culture, we identified endogenous CFTR as a 170 kDa protein, consistent with that of fully glycosylated, mature CFTR molecule. This observation led to the hypothesis that airway secretory glands could be an important site for ...
متن کاملHuman neutrophil elastase releases two pools of mucinlike glycoconjugate from tracheal submucosal gland cells.
Neutrophil elastase can contribute to the pathogenesis of increased airway reactivity and excess mucus secretion in many pulmonary diseases. Ten nanomolar human neutrophil elastase (HNE) effectively empties airway serous cells, raising the question of why HNE is not equally effective at emptying mucous cells of their stored mucin because total release of mucin granules is not seen in postmortem...
متن کاملProperties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands.
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et a...
متن کاملChloride secretion by cultures of pig tracheal gland cells.
Malfunction of airway submucosal glands contributes to the pathology of cystic fibrosis (CF), and cell cultures of CF human airway glands show defects in Cl(-) and water transport. Recently, a transgenic pig model of CF (the CF pig) has been developed. Accordingly, we have developed cell cultures of pig airway gland epithelium for use in investigating alterations in gland function in CF. Our cu...
متن کاملNew models of the tracheal airway define the glandular contribution to airway surface fluid and electrolyte composition.
Antibacterial defenses in the airway are dependent on multifactorial influences that determine the composition of both fluid and/or electrolytes at the surface of the airway and the secretory products that aid in bacterial killing and clearance. In cystic fibrosis (CF), these mechanisms of airway protection may be defective, leading to increased colonization with Pseudomonas aeruginosa. Submuco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 305 11 شماره
صفحات -
تاریخ انتشار 2013